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Sup-norm bounds on H

H := {z = x + iy | y > 0}, upper half-plane
Γ ⊊ SL(2,R), Fuchsian subgroup of the first kind
Sk(Γ): space of cusp forms on H of weight k w.r.t Γ
{fj}1≤j≤d O.N.B. on Sk(Γ) w.r.t. Petersson inner product.

Theorem (Friedman, Jorgenson & Kramer, 2016)

SΓ
k (z) :=

∑d
j=1 yk |fj(z)|2 (z ∈ H, k ≥ 2)

sup
z∈H

SΓ
k (z) ≤

cΓ k (Γ cocompact),
cΓ k3/2 (Γcofinite),

where cΓ > 0 is a positive real number depending only on Γ.
Furthermore, this bound is uniform in the sense that if we fix a
group Γ0 ⊊ SL(2,R) and take Γ to be a subgroup of Γ0 of
finite index, then cΓ depends only on the fixed group Γ0.
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Generalization

Hn = {Z = X+iY | X , Y ∈ Rn×n, X = X t ,Y = Y t ,Y > 0}
Siegel upper half-space of degree n
Sp(n,R) := {g ∈ R2n×2n | g tJng = Jn} with
Jn :=

(
0 1n

−1n 0

)
, real symplectic group of degree n

Z 7→ gZ = (AZ +B)(CZ +D)−1
(
g =

(
A B
C D

)
∈ Sp(n,R)

)
Γ ⊊ Sp(n,R) arithmetic subgroup, e.g., Γn := Sp(n,Z)

Sn
k (Γ): space of cusp forms on Hn of weight k w.r.t Γ

{fj}1≤j≤d , a basis of Sn
k (Γ) orthonormal with respect to

the Petersson inner product on Sn
k (Γ).

SΓ
k (Z ) :=

d∑
j=1

det(Y )k |fj(Z )|2 (Z ∈ Hn)

extra
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Sup-norm bounds on Hn

Theorem
Γ ⊊ Sp(n,R) arithmetic subgroup
k ≥ n + 1

Then, for all n ≥ 2, we have

sup
Z∈Hn

SΓ
k (Z )≤

cn,Γ kn(n+1)/2 (Γ cocompact),
cn,Γ k3n(n+1)/4 (Γ cofinite),

where cn,Γ > 0 is a positive real number depending only on the
degree n of Hn and the group Γ.

Furthermore, this bound is uniform in the sense that if we fix a
group Γ0 ⊊ Sp(n,R) and take Γ to be a subgroup of Γ0 of
finite index, then the constant cn,Γ in these bounds depends
only on the degree n and the fixed group Γ0.
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Strategy of proof

Vn
k (Γ): the space of real analytic functions φ : Hn → C

with the transformation behaviour

φ(γZ ) =
(

det(CZ + D)
det(CZ + D)

)k/2

φ(Z )
(

γ =
(

A B
C D

)
∈ Γ

)

Petersson inner product and norm defined on Vn
k (Γ).

Hn
k(Γ) := {φ ∈ Vn

k (Γ) | ∥φ∥ < ∞}, the Hilbert space of
square integrable functions in Vn

k (Γ).

∆: Laplace–Beltrami operator on Hn

Siegel–Maaß Laplacian of weight k: ∆k =∆−tr
(
ikY ∂

∂X
)

∆k extends to an essentially self-adjoint linear operator
acting on a dense subspace of Hn

k(Γ).
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Strategy of proof

Laplace eq. (∆k + λ)φ = 0 satisfy λ ≥ nk
4 ((n + 1) − k)

λ = nk
4 ((n + 1) − k) =⇒ φ ∈ Hn

k(Γ) is of the form
φ(Z ) = det(Y )k/2f (Z ) with f ∈ Sn

k (Γ)

Connecting Siegel cusp forms to ∆k

Sk(Γ) ∼= ker(∆k + nk
4 ((n + 1) − k)) induced by f 7→ det(Y )k/2f

K (k,Γ)
t : Heat kernel corresponding to ∆k on M = Γ\Hn

.

K (k,Γ)
t has the spectral decomposition

K (k,Γ)
t (Z ) =

∞∑
j=1

e−λj t |φλj (Z )|2 + continuous terms

Connecting heat kernel to SΓ
k (Z )
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lim
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exp
(

nk
4 ((n + 1) − k) t

)
K (k,Γ)
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det(Y )k |fj(Z )|2



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

6 / 15

Strategy of proof

Laplace eq. (∆k + λ)φ = 0 satisfy λ ≥ nk
4 ((n + 1) − k)

λ = nk
4 ((n + 1) − k) =⇒ φ ∈ Hn

k(Γ) is of the form
φ(Z ) = det(Y )k/2f (Z ) with f ∈ Sn

k (Γ)

Connecting Siegel cusp forms to ∆k

Sk(Γ) ∼= ker(∆k + nk
4 ((n + 1) − k)) induced by f 7→ det(Y )k/2f

K (k,Γ)
t : Heat kernel corresponding to ∆k on M = Γ\Hn.

K (k,Γ)
t has the spectral decomposition

K (k,Γ)
t (Z ) =

∞∑
j=1

e−λj t |φλj (Z )|2 + continuous terms

Connecting heat kernel to SΓ
k (Z )

lim
t→∞

exp
(

− nk
4 (k − (n +1)) t

)
K (k,Γ)
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Heat kernel on Siegel upper half-space

The heat kernel on Hn corresponding to the Laplace–Beltrami
operator ∆ = ∆0 is obtained as:

Heat kernel on Hn

Kt(2R)=cn
exp (−

∑n
j=1 j2t/4)

tn2+n/2

�

q∈K

ε(ϱ(r ,q)) exp(−
∑n

j=1 ϱj (r ,q)2/t)
δ(ϱ(r ,q)) dµ(q)

where,

R = R(Z , W ) (Z , W ∈ Hn) is a (n × n) diagonal matrix coming
from the eigenvalues of the cross-ratio matrix of Z and W .



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

8 / 15

Heat kernel on Siegel upper half-space

The heat kernel on Hn corresponding to the Laplace–Beltrami
operator ∆ = ∆0 is obtained as:

Heat kernel on Hn

Kt(2R)=cn
exp (−

∑n
j=1 j2t/4)

tn2+n/2

�

q∈K

ε(ϱ(r ,q)) exp(−
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j=1 ϱj (r ,q)2/t)
δ(ϱ(r ,q)) dµ(q)

where,

R =


r1 0

. . .
0 rn

 r =
(

R 0
0 −R

)
(rj ∈ R≥0)

P =


ϱ1 0

. . .
0 ϱn

 ϱ =
(

P 0
0 −P

)
(ϱj ∈ R)
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ε(ϱ(r ,q)) exp(−
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j=1 ϱj (r ,q)2/t)
δ(ϱ(r ,q)) dµ(q)

where,
qer qt = ueϱut ∈ Sp(n,C), Hermitian.
r and ϱ symplectic diagonal.
q ∈ K = Sp(n,C) ∩ O(2n,C)
u ∈ U = Sp(n,C) ∩ U(2n)
Hard to explicitly calculate ϱ in terms of r and q.
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∏
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Heat kernel of weight k

The heat kernel K (k)
t (2R) of weight k on Hn is immediately

obtained from the previous formula by inserting the factor
det(h(q))2k , i.e.,

K (k)
t (2R) = cn

e
−
∑n

j=1 j2t/4

tn2+n/2

�
K · · · det(h(q))2k dµ(q),

where the matrix h(q) ∈ Cn×n is obtained as follows:
Write q ∈ K as q = q0qh with q0 real orthogonal and

qh =
(

A B
−B A

)

is hermitian orthogonal.
Then, we obatin h(q) = A + iB, which is hermitian.



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

10 / 15

Heat kernel of weight k

From the parametrization

u =
(

V 0
0 V

)(
cos(Θ) sin(Θ)

− sin(Θ) cos(Θ)

)(
W 0
0 W

)
of U and the

relation qer qt = ueϱut , one obtains

det(h(q)) ≤ exp
( n∑

j=1
|ϱj |
)
/

n∏
j=1

chk(rj)

Periodized weight-k heat kernel on Γ\Hn

K (k,Γ)
t (Z ):=

∑
γ∈Γ

det
(

Z−γZ
γZ−Z

)k/2
det

(
CZ+D
CZ+D

)k/2
K (k)

t (2R(Z ,γZ ))
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Compact case

Let M be compact. By a counting function argument∑
γ∈Γ

K (k)
t (R(Z , γZ )) ≤ cn,Γ

�

(rj )=0

K (k)
t (2R) |δ(2r)|

n∧
j=1

drj

= cn,Γ

∞�

(rj )=0

�

q∈K

· · · dµ(q) ∧
n∧

j=1
drj

From qer qt = ueϱut , using change of variables
|δ(2r)|

n∧
j=1

drj ∧ dµ(q) = cn δ(ϱ)2
n∧

j=1
dϱj ∧ dµ(u), the

right hand integral becomes

∑
γ∈Γ

K (k)
t (R(Z , γZ )) ≤ cn,Γ

∞�

(ϱj )=−∞

�

u∈U

· · · dµ(u) ∧
n∧

j=1
dϱj
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Compact case

This gets rid of the semi-explicit nature of the integral and
can be explicitly bounded by a series of Gamma integrals
which can be easily evaluated to a polynomial in k and t.

Taking the highest values of k and t we have
SΓ

k (Z ) ≤ cn,Γ kn(n+1) t
n(n+1)

2 µ(
√

t).
Now multiplying both sides of the above inequality by
e−kt and integrating over t ∈ [0, ∞], we have

SΓ
k (Z ) ≤ cn,Γ kn(n+1)/2 (Z ∈ Hn),

which is the requisite compact bound.



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

12 / 15

Compact case

This gets rid of the semi-explicit nature of the integral and
can be explicitly bounded by a series of Gamma integrals
which can be easily evaluated to a polynomial in k and t.
Taking the highest values of k and t we have
SΓ

k (Z ) ≤ cn,Γ kn(n+1) t
n(n+1)

2 µ(
√

t).

Now multiplying both sides of the above inequality by
e−kt and integrating over t ∈ [0, ∞], we have

SΓ
k (Z ) ≤ cn,Γ kn(n+1)/2 (Z ∈ Hn),

which is the requisite compact bound.



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

12 / 15

Compact case

This gets rid of the semi-explicit nature of the integral and
can be explicitly bounded by a series of Gamma integrals
which can be easily evaluated to a polynomial in k and t.
Taking the highest values of k and t we have
SΓ

k (Z ) ≤ cn,Γ kn(n+1) t
n(n+1)

2 µ(
√

t).
Now multiplying both sides of the above inequality by
e−kt and integrating over t ∈ [0, ∞], we have

SΓ
k (Z ) ≤ cn,Γ kn(n+1)/2 (Z ∈ Hn),

which is the requisite compact bound.



Sup-norm
bounds for
Siegel cusp

forms

Motivation

Results

Strategy of
proof

Heat kernel

Concluding
the proof

13 / 15

Non-compact case

With some limiting argument on the heat kernel:

sup
Z∈Hn

SΓ
k (Z ) ≤ cn kn(n+1)/2 ∑

γ∈Γ

1∏n
j=1 chk(rj(Z , γZ ))

Using the commensurability of Γ with Γn, we shift to the
standard picture for ’cusps at infinity’ for Γn.
Then with a maximum-modulus argument, we show that
in suitably chosen cusp-neighbourhoods, the compact
bound holds.
Too far away from the cusps, obviously the compact
bound holds
Thus, left to determine the bound only in the annulus:
{Z = X + iY ∈ Fn | ε < λn(Y ) ≤ k

2c2(n)}
⊊ {Z = X + iY ∈ Fn | Y ≤ k

2c2(n)1n}
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Non-compact case

In this region, we split the sum into
∑

γ∈Γ\Γ∞ +
∑

γ∈Γ∞ .

Standard parabolic matrices

Γ∞ =
{(

A AS
0 A−t

) ∣∣∣A =
(
1j 0
L 1n−j

)
, S =

(
0 Ht
H S2

)
, 1 ≤ j ≤ n − 1

}
,

where L, H ∈ Z(n−j)×j and S2 ∈ Z(n−j)×(n−j), S2 = St
2.

The sum
∑

γ∈Γ\Γ∞ gives only compact bound.
The largest contribution in the sum

∑
γ∈Γ∞ comes from

Γ0
∞ =

{(
1n S
0 1n

) ∣∣∣ S = St ∈ Zn×n
}

.

(
1n S
0 1n

)
Z = Z +S = (X +S)+ iY (Z = X + iY ∈ Hn).
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Non-compact case

We estimate this contribution by∑
γ∈Γ0

∞

1
n∏

j=1
chk(rj(Z , γZ ))

∑
γ∈Γ0

∞

1
n∏

j=1
chk(rj(Z , Z +S))

≤
�

S=St

[dS]
det(1n + (1

2Y −1/2SY −1/2)2)k/2

= cn det(Y )(n+1)/2
�

T=T t

[dT ]
det(1n + T 2)k/2

Standard matrix beta integral first calculated by Hua in 1963.
Then with det(Y ) < (k/(2c2(n)))n, it easily follows that∑

γ∈Γ0
∞

1∏n
j=1 chk(rj(Z , γZ ))

≤ cnkn(n+1)/4.

This gives the requisite non-compact bound.
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Extra definitions

Definition (Siegel cusp form)
Let Γ ⊂ Spn(R) be a subgroup commensurable with Spn(Z),
i.e., the intersection Γ ∩ Spn(Z) is a finite index subgroup of Γ
as well as of Spn(Z).
We let γj ∈ Spn(Z) (j = 1, . . . , h) denote a set of
representatives for the left cosets of Γ ∩ Spn(Z) in Spn(Z).
Then, a Siegel cusp form of weight k and degree n for Γ is a
function f : Hn −→ C satisfying the following conditions:
(i) f is holomorphic;
(ii) f (γZ ) = det(CZ + D)k f (Z ) for all γ =

(
A B
C D

)
∈ Γ;

(iii) given Y0 ∈ Symn(R) with Y0 ≫ 0, the quantities
det(CjZ + Dj)−k f (γjZ ) become arbitrarily small in the
region {Z = X + iY ∈ Hn | Y ≥ Y0} for the set of
representatives γj =

( Aj Bj
Cj Dj

)
∈ Spn(Z). back
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Extra definitions

Distance matrix R(Z , W ) on Hn is given by

R(Z , W ) =
( r1(Z ,W ) 0

. . .
0 rn(Z ,W )

)
(Z , W ∈ Hn)

rj(Z , W ) related to the eigenvalues ρj(Z , W ) of the
cross-ratio matrix
ρ(Z , W ) = (Z − W )(Z − W )−1(Z − W )(Z − W )−1

by the relation

exp(2rj(Z , W )) = 1+
√

ρj (Z ,W )
1−

√
ρj (Z ,W )

(1 ≤ j ≤ n).

Siegel metric on Hn given by:

dµn(Z ) =

∧
1≤j≤k≤n

dxj,k∧dyj,k

det(Y )n+1 (zj,k = xj,k + iyj,k)
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