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Siegel cusp
forms

e H:={z=x+1iy|y >0}, upper half-plane
e [ C SL(2,R), Fuchsian subgroup of the first kind

Motivation @ Sk(I): space of cusp forms on H of weight k w.r.t I

o {fi}i<j<d O.N.B. on Si(I) w.r.t. Petersson inner product.

Theorem (Friedman, Jorgenson & Kramer, 2016)
Sk(2) =L yk6(2))> (z€H k>2)

crk (I cocompact),

sup Sk (2) <
zeﬁ K(2) < cr k3/2 ([ cofinite),

where cr > 0 is a positive real number depending only on I'.

Furthermore, this bound is uniform in the sense that if we fix a
group g € SL(2,R) and take I' to be a subgroup of [y of
finite index, then cr depends only on the fixed group Ig.
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Siegel cusp

forms Siegel upper half-space of degree n
e Sp(n,R) := {g € R?>"™2" | gt J & = J,} with
Jy = (—?1,, 10"), real symplectic group of degree n
o Z+sgZ = (AZ+B)(CZ+D)* (g=(28) € Sp(nR))
e [ C Sp(n,R) arithmetic subgroup, e.g., ', := Sp(n,Z)
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Generalization

Sup-norm

o o H,={Z=X+iY|X,Y eR™" X =X Y =Y'Y >0}
forms Siegel upper half-space of degree n

o Sp(n,R) :={g € R2"™*2n | gt J o = J,} with

Jy = (—?1,, 10"), real symplectic group of degree n

o Z+sgZ = (AZ+B)(CZ+D)* (g=(28) € Sp(nR))
e [ C Sp(n,R) arithmetic subgroup, e.g., ', := Sp(n,Z)

RESTS

o S7(I): space of cusp forms on H, of weight k w.r.t

o {fi}1<j<q, a basis of S{(I') orthonormal with respect to
the Petersson inner product on S(T).

o S[(2)1= 3 de(V)IHD (2 € )
2
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Sup-norm
bounds for

forms o [ C Sp(n,R) arithmetic subgroup
@ k>n+1

Then, for all n > 2, we have

RESTS

sup SE(Z)S

cnr k"2 (T cocompact),
ZeH,

cnr K304 (T cofinite),

where c,r > 0 is a positive real number depending only on the
degree n of H,, and the group T.

Furthermore, this bound is uniform in the sense that if we fix a
group [y € Sp(n,R) and take I to be a subgroup of ['y of
finite index, then the constant c, in these bounds depends
only on the degree n and the fixed group [g.
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Sup-norm
bounds for

o e V/(T): the space of real analytic functions ¢: H, — C
forms with the transformation behaviour

k/2
det(CZ + D) A B
)=|—F=—"= Z = el
#2) (det(CZ—i— D)) #l2) ('Y (C D) )
@ Petersson inner product and norm defined on V().

o HY(IM) :=={p e V)| |l¢ll < oo}, the Hilbert space of
square integrable functions in V().

Strategy of
proof

@ A: Laplace-Beltrami operator on H,
. . o 0
@ Siegel-MaaB Laplacian of weight k: Ax=A—tr <1kY 67)

@ Ay extends to an essentially self-adjoint linear operator
acting on a dense subspace of HJ(T).
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Strategy of proof

Sup-norm

bounds for o Laplace eq. (Ax + \)p = 0 satisfy A > 2¢((n+ 1) — k)

Siegel cusp

forms o \= ”Tk((n +1) — k) = ¢ € H{(T) is of the form
©(Z) = det(Y)*/2f(Z) with f € SJ(T)

Connecting Siegel cusp forms to Ay

el S, () = ker(Ay + % ((n+1) — k)) induced by f — det(Y)/2f

° Kt(k’r): Heat kernel corresponding to Ay on M = N'\H,,.

° Kt(k’r) has the spectral decomposition

Kt(k’r)(Z) _ Z e_Aft|<PA,-(Z)\2 + continuous terms
j=1

Connecting heat kernel to S} (Z)

lim exp (%((n+1) — k) t) K{“T(2) = > det(Y)X|£(2)2
t—00 j=1
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ounds for o Laplace eq. (Ax + A\)p = 0 satisfy A > % ((n+ 1) — k)

forms o A\="2((n+1)— k) = ¢ € H](I) is of the form
©(Z) = det(Y)K/2f(Z) with f € SP(T)

Connecting Siegel cusp forms to Ay

Bl S (1) = ker(Ax + %((n+1) — k)) induced by f — det(Y)/2f

° Kt(k’r): Heat kernel corresponding to Ax on M = N'\H,,.
° Kt(k’r) has the spectral decomposition
o0

Kt(k’r)(Z) _ Z e—Aft|<ij(Z)\2 + continuous terms
j=1

Connecting heat kernel to S} (Z)

Jim exp (= % (k= (n+1)) t) KID(Z) = S[(Z) (k> n+1)

o
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Sup-norm
bounds for o Laplace eq. (Ax + \)p = 0 satisfy A > ”Tk((n +1)—k)

forms o A\=2((n+1)— k) = ¢ € HJ(I) is of the form
©(Z) = det(Y)K/2f(Z) with f € SP(T)

Connecting Siegel cusp forms to Ay
Strategy of

o Sk(T) = ker(Ax + 2% ((n+1) — k)) induced by f — det(Y)*/2f

° Kt(k’r): Heat kernel corresponding to Ay on M = '\H,,.
° Kt(k’r) has the spectral decomposition
(0.9}
Kt(k’r)(Z) = Z e_>‘ft|<p,\j(Z)|2 + continuous terms
j=1

Connecting heat kernel to S} (Z)
op (— k= (n+ 1)) K2 2 5[(2) (£>0)
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Heat kernel on Siegel upper half-space

Sup-norm

s The heat kernel on H,, corresponding to the Laplace—Beltrami
iegel cusp

forms operator A = /A is obtained as:

Heat kernel on H,

exp (=D, j2t/4) [fele(r,q))exp(=D " 0i(r,q)*/t) q

Kt(2R):Cn t"2+"/2 0(o(r,q)) M(q)
geK

Heat kernel

where,

R=R(Z,W)(Z,W € H,) is a (n x n) diagonal matrix coming
from the eigenvalues of the cross-ratio matrix of Z and W.



Heat kernel on Siegel upper half-space

Sup-norm

bounds for The heat kernel on H,, corresponding to the Laplace—Beltrami

Siegel cusp ) )
forms operator A = /A is obtained as:

Heat kernel on H,

Ki(2R)=c exp (=D, jt/4) [ee(r,q)) exp(=3 ", 0i(r,q)*/t)
t —tn

R el ) du(q)
qgeK
Heat kernel
h
where, n 0 . .
R = r:(o —R) (rjERZO)
0 n
0
po|” (P ) (4er)
- ¢=\o -p) ‘¥
0 On




Heat kernel on Siegel upper half-space

Sup-norm

s The heat kernel on H,, corresponding to the Laplace—Beltrami
iegel cusp

forms operator A = /A is obtained as:

Heat kernel on H,

exp (=D, j2t/4) [fele(r,q))exp(=D " 0i(r,q)*/t) q

Kt(2R):Cn t"2+"/2 0(o(r,q)) M(q)

geK

Heat kernel

where,
e ge'q' = ue?u’ € Sp(n, C), Hermitian.
r and o symplectic diagonal.
g € K =Sp(n,C)n O(2n,C)
ue U=Sp(n,C)nU(2n)

°
°
°
@ Hard to explicitly calculate ¢ in terms of r and gq.



Heat kernel on Siegel upper half-space

Sup-norm

s The heat kernel on H,, corresponding to the Laplace—Beltrami
iegel cusp

forms operator A = /A is obtained as:

Heat kernel on H,

exp (=D, j2t/4) [fele(r,q))exp(=D " 0i(r,q)*/t) q

Kt(2R):Cn t"2+"/2 0(o(r,q)) M(q)
geK

Heat kernel

where,

e0)=[[ o I (e5+ex) ] (05— ok)

1<i<n 1<j<k<n 1<j<k<n

S0)= T1 shle) TI (252 T sw(Z%)

1<j<n 1<j<k<n 1<j<k<n



Heat kernel of weight k

Sup-norm

bounds for The heat kernel Kt(k)(2R) of weight k on H, is immediately

Siegel cusp

s obtained from the previous formula by inserting the factor
det(h(q))?*, i.e.,

KM ©R) = c,° Zzgj/; [ - - det(h(q))?* du(q),

Heat kernel

where the matrix h(q) € C"*" is obtained as follows:

o Write g € K as g = qogp with g real orthogonal and

([ A B

is hermitian orthogonal.
@ Then, we obatin h(q) = A+ iB, which is hermitian.
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Heat kernel of weight k

Sup-norm From the parametrization

bounds for
Sl iy V. 0\( cos(®) sin(©)\(W 0
forms — — JR—
“ (0 V) (— sin(@) cos(©)/\ 0 W of U and the
relation ge'qt = ue?u’, one obtains

B det(cos(©) WeP W' cos(©) + sin(©)We P Wtsin(0))

det(h(q)) = " chk(r)
j=1 €U

Heat kernel
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Sup-norm
bounds for

Siegel . .
s From the parametrization

[V 0)\[ cos(©) sin(©)\(W 0
u—<0 V)(—sin(@) cos(@))(O W> of U and the

relation ge'qt = ue?u’, one obtains

Heat kernel det(h(q)) < exp (Z ’QA)/H chk(rj)
j=1

j=1




Heat kernel of weight k

Sup-norm
bounds for

Siegel cus| . .
orms From the parametrization

[V 0)\[ cos(©) sin(©)\(W 0
u—<0 V)(—sin(@) cos(@))(O W> of U and the

relation ge'qt = ue?u’, one obtains

Heat kernel det(h(q)) < exp (Z ’QJD/H chk(rj)
j=1

j=1

Periodized weight-k heat kernel on MN\H,

(kD) 7Y Z2—9Z\K? | . (cZ1D\¥/? (k)
K| (Z)._%rdet(ﬁ) det ($Z+8)"" K (2R(242))
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Compact case

Supers o Let M be compact. By a counting function argument

bounds for
Siegel cusp

forms Z Kt(k)(R(Z,f}/Z)) S Cn,l' / Kt(k)(2R) ’6(2r)| /\ d’j/
ver (r;)=0 =
= Cnr / / - du(g) A /\drf
()=0 4EK a

Concluding
the proof



Compact case

St @ Let M be compact. By a counting function argument

bounds for

Siegel cusp n
forms k k
S KORZAZ) < cor [ KOER) 520 d
e (5)=0 =
o0
n
= Cnr / / o du(g) AN drg
(=0 a<K =
Concluding
the proof e From ge'q! = uent, using change of variables

n n
[92r)] A dr A dpu(a) = ¢ 6(0)? A doj A dp(u), the
J: J:

right hand integral becomes

oo

KY(R(Z,72)) < ca oo dp(u ndj
S kM(R(Z,72)) r// ) A de

et (g))=—o0 uEU
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@ This gets rid of the semi-explicit nature of the integral and
can be explicitly bounded by a series of Gamma integrals
which can be easily evaluated to a polynomial in k and t.

Concluding
the proof
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Compact case

Sup-norm

bounds for

Siegel cusp
forms

@ This gets rid of the semi-explicit nature of the integral and
can be explicitly bounded by a series of Gamma integrals
which can be easily evaluated to a polynomial in k and t.

@ Taking the highest values of k and t we have
(n+1)

SH(Z) < cor k"D £ (V).
Condily @ Now multiplying both sides of the above inequality by
e proof
e~k and integrating over t € [0, 0], we have

SKH(Z) < cpr kD2 (7 e H),

which is the requisite compact bound.
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Non-compact case

S o With some limiting argument on the heat kernel:

bounds for
Siegel cusp 1
r n(n+1)/2
sup Si(Z) < cnk -
Z€H, % j=1 Chk(rj(Za’YZ))

forms

@ Using the commensurability of [ with I, we shift to the
standard picture for 'cusps at infinity’ for I,,.

S @ Then with a maximum-modulus argument, we show that

i pressi in suitably chosen cusp-neighbourhoods, the compact
bound holds.

@ Too far away from the cusps, obviously the compact
bound holds

@ Thus, left to determine the bound only in the annulus:
{(Z=X+iYeTye<(Y) < 55}
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Non-compact case

Sup-norm
bounds for

Szl @ @ In this region, we split the sum into Zver\rw +>

forms

VEMNso

Standard parabolic matrices

o= {(842)]4= (Y1), 5= (8%),15s<n-1}
where L, H e Z("=)*J and S, € z(n=N)x*(n n-J) , Sy =Sk

Concluding

i ® The sum > cr\r_ gives only compact bound.

@ The largest contribution in the sum > comes from

YEN oo

={(%2)]s=s ez}

° (%" fn)Z =Z+S=(X4+9+iY  (Z=X+iY € H,).
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Jert, [1eh(r,(Z,Z+S))
j=1
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forms 1 [dS]
n < det(1 ly—-1/26y—1/2)2)k/2
sert, TLehk(r(Z,2+5)) o2 96t ln+ (5 )%)
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1 [d5]
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j=1
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< e( ) det(]l,,+ T2)k/2
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Sup-norm

bounds for We estimate this contribution by
Siegel cusp
forms

1 [dS]

i = | det(L, + (Ly- 125y 1/2)2)K/2

sert, ek (5(2.2+9)) 75 detln (2 F)
=1

[d7]

— nd t(Y (n+1)/2/
< e( ) det(]l,,+ T2)k/2

T=Tt
Concluding
the proof

Standard matrix beta integral first calculated by Hua in 1963.
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1 [dS]
0 S | Ge1. = Ty 125y 1/2)2)k/2
sere, [1ehk(r(Z,2+5)) /g detlnt (3 )?)
j=1
[dT]

— nd t(Y (n+1)/2/
Cpde ( ) det(]l,, + T2)k/2
T=Tt

Concluding
the proof

Standard matrix beta integral first calculated by Hua in 1963.
Then with det(Y) < (k/(2c2(n)))", it easily follows that

1
200 ch(ri(Z,~2))
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Non-compact case

Sup-norm

bounds for We estimate this contribution by
Siegel cusp
forms

1 [dS]

0 S | det(1. 5 (LY 125y -1/2)0)k/2

sert, 11k (5(Z,2+8)) oI5 detn+ F)
j=1

[d7]

— nd t(Y (n+1)/2/
< e( ) det(]l,,+ T2)k/2

T=Tt
Concluding
the proof

Standard matrix beta integral first calculated by Hua in 1963.
Then with det(Y) < (k/(2c2(n)))", it easily follows that

1
2 [T}y ch(r(Z,72))

yery,

< ann(n+1)/4.

This gives the requisite non-compact bound.
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Extra definitions

Sup-norm

hounds for Definition (Siegel cusp form)
Siegel cusp

T Let I' C Sp,(R) be a subgroup commensurable with Sp,(Z),
i.e., the intersection ' N Sp,(Z) is a finite index subgroup of I'
as well as of Sp,(Z).

We let v; € Sp,(Z) (j=1,..., h) denote a set of
representatives for the left cosets of I' N Sp,(Z) in Sp,(Z).
Then, a Siegel cusp form of weight k and degree n for I is a
function f: H,, — C satisfying the following conditions:

(i) f is holomorphic;
(1) f(yZ) = det(CZ + D)*f(Z) forall y= (2 8) €T;
(iii) given Yp € Sym,(R) with Yp > 0, the quantities

det(C;Z + D;)~¥f(v;Z) become arbitrarily small in the
region {Z =X+ iY € H,|Y > Yy} for the set of

representatives y; = (2 D, ) € Sp,(Z).




Extra definitions

Sup-norm
bounds for

Siegel cusp e Distance matrix R(Z, W) on H, is given by

forms

n(Z,w) 0
R(Z,W)z( . ) (Z,W e Hp,)
0 rm(Z,W)
ri(Z, W) related to the eigenvalues p;(Z, W) of the
cross-ratio matrix
p(Z, W) = (Z = W)(Z - W) Y(Z - W)(Z - W)
by the relation
_ _ 1+y/pi(Z,W) .
exp(2rj(Z, W)) = 1-\/p,(Z,W) (1<j<n).

@ Siegel metric on H, given by:
A 6 ndy;

dun(Z) = == —  (Zk =X+ k)
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